PEND.FISIKA FKIP UNIVERSITAS SRIWIJAYA

says

Senin, 27 April 2015

Baroghraph

Barometer adalah sebuah alat yang digunakan untuk mengukur tekanan udara. Barometer umum digunakan dalam peramalan cuaca, dimana tekanan udara yang tinggi menandakan cuaca yang "bersahabat", sedangkan tekanan udara rendah menandakan kemungkinan badai.
Istilah Barometer diperkenalkan pada 1665-1666 oleh seorang ilmuwan alam dari Irlandia bernama Robert Boyle. Kata tersebut diturunkan dari istilah Yunani báros yang berarti 'berat, bobot' dan métron yang berarti 'ukuran', yang berarti ukuran berat udara.Digunakan terutama oleh ahli meteorologi, pilot, dan pelaut, barometer digunakan untuk memprediksi kondisi cuaca dengan mengukur perubahan tekanan atmosfer.Barometer tidak memberitahu cuaca pada saat itu, melainkan memprediksi cuaca yang akan terjadi satu atau dua hari kemudian.
Barometer akan berfungsi sama baiknya saat diletakkan di dalam maupun diluar ruangan.
Terdapat empat jenis barometer, berikut adalah deskripsi singkatnya.

Barometer air

Barometer air – juga dikenal sebagai termometer Goethe – terdiri dari wadah kaca tertutup yang setengah terisi air dan semacam cabang kecil (cerat).
Cerat kaca terhubung ke wadah kaca. Karena saling terhubung, cerat dan wadah kaca akan terisi air.
Ketika tekanan atmosfer rendah, level air pada cerat perlahan akan naik melebihi permukaan air dalam wadah kaca.
Bila level air di cerat turun, hal ini berarti tekanan atmosfer berubah menjadi lebih tinggi.

Barometer aneroid

Diciptakan pada tahun 1843, barometer aneroid memiliki mekanisme yang rumit untuk membaca perubahan tekanan atmosfer.
Barometer aneroid terdiri dari wadah dan semacam logam lentur yang dikenal sebagai kapsul aneroid atau sel.
Aneroid ini terbuat dari paduan berilium dan tembaga. Wadah kemudian disegel setelah udara dikosongkan.
Ketika kotak logam mengembang atau menyusut karena perubahan tekanan luar, perangkat dalam barometer menerjemahkannya menjadi pembacaan tekanan udara.

Barograf (barograph)

Barograph adalah istilah lain untuk barometer yang dapat merekam sendiri hasil pengukurannya. Barograph umumnya menggunakan prinsip Barometer Aneroid, dengan menghubungkan beberapa kapsul/ cell aneroid dengan sebuah pena untuk membuat track pada kerta pias yang diletakkan pada tabung yang berputar 24 jam per rotasi. Pada pias terdapat garis-garis tegak menunjukkan waktu dan garis mendatar menunjukkan tekanan udara.Hasil pencatatan ini – dikenal sebagai barogram – memungkinkan para ilmuwan dan ahli meteorologi untuk mempelajari iklim suatu daerah dalam jangka panjang, bukan hanya cuaca dalam satu hari.Tingkat keakuratan dari barograph, salah satunya ditentukan oleh jumlah kapsul/ cell aneroid yang digunakan. Semakin banyak kapsul aneroid yang digunakan maka semakin peka barograph tersebut terhadap perubahan tekanan udara.

Evaporimeter

1. EVAPORIMETER PANCI TERBUKA


Evaporimeter panci terbuka digunakan untuk mengukur evaporasi. Makin luas permukaan panci, makin representatif atau makin mendekati penguapan yang sebenarnya terjadi pada permukaan danau, waduk, sungai dan lain-lainnya. Pengukuran evaporasi dengan menggunakan evaporimeter memerlukan perlengkapan sebagai berikut :
  1. Panci Bundar Besar
  2. Hook Gauge yaitu suatu alat untuk mengukur perubahan tinggi permukaan air dalam panci. Hook Gauge mempunyai bermacam-macam bentuk, sehingga cara pembacaannya berlainan.
  3. Still Well ialah bejana terbuat dari logam (kuningan) yang berbentuk silinder dan mempunyai 3 buah kaki.
  4. Thermometer air dan thermometer maximum/ minimum
  5. Cup Counter Anemometer
  6. Pondasi/ Alas
  7. Penakar hujan biasa
2. Evaporimeter Jenis Piche
Seperti panci penguapan terbuka, alat ini digunakan sebagai pengukur penguapan secara relatif. Maksudnya, alat ini tidak dapat mengukur secara langsung evaporasi ataupun evapotranspirasi yang sesungguhnya terjadi.
Hasil pembacaannya sangat tergantung terhadap angin, iklim dan debu. Pada prinsipnya Piche evaporimeter  terdiri dari:
  1. Pipa gelas yang panjangnya + 20 Cm dan garis tengahnya + 1,5 Cm. Pada pipa gelas terdapat skala, yang menyatakan volume air dalam Cm3 atau persepuluhnya. Ujung bawah pipa gelas terbuka dan ujung atasnya tertutup dan dilenghkapi dengan tempat menggantungkan alat tersebut.
  2. Piringan kertas filter berbentuk bulat. Kertas ini berpori-pori banyak sehingga mudah menyerap air. Kertas filter dipasang pada mulut pipa terbuka.
  3. Penjepit logam, yang berbentuk lengkungan seperti lembaran per. Per ujung yang melekat disekeliling pipa dan ujung lainnya berbentuk sama dengan diameter pipa.

Dispenser panas dan dingin

Dispenser digunakan untuk mendinginkan dan memanaskan air dalam galon aqua ukuran 19 liter. didalam dispenser bagian atas terdapat tabung yang terbuat dari stenles steel yang dibagian luar tabungnya dililitkan pipa tembaga ukuran 1/4 yang berfungsi untuk mendinginkan air. lilitan pipa pada luar tabung dapat disamakan dengan sebuah evaporator pada AC atau pada lemari es
cara kerja pendinginan pada dispenser dapat disamakan bila kita meletakan sebuah gelas dari stenles steel yang berisi air kedalam bagian frezzer pada lemari es. pada bagian tengah dispenser terdapat tabung yang dibagian tengahnya dililitkan sebuah heater/pemanas dan thermostat. fungsi dari heater tersebut berguna untuk memanaskan air yang berada pada tabung, air akan mengalir/keluar melalui kran warna merah karena air panas dalam tabung menghasilkan suatu tekanan. sedangkan air yang dingin keluar dari kran yang berwarna biru didasari oleh proses gravitasi.
Kerusakan-kerusakan yang terjadi pada dispenser adalah sbb:
·         air yang keluar melalui kran warna biru tidak dingin
- chek thermostat yang berada pada belakang dispenser, apakah diposisi paling rendah?
jika ya, putar thermostat kearah kanan/keposisi tinggi.
- check pada dua kaki terminal thermostat, apakah ada sebuah tahanan/ohm untuk dapat mengalirkan arus listrik ke compressor?
- check compressor, apakah dapat beroperasi atau tidak?
jika tidak beroperasi cek relay compressor, overload compressor dan kabel-kabel yang menuju ke compressor.
- check kebocoran freon pada semua sistem sambungan pipa.
·          air keluar dari bagian bawah dispenser
- check karet seal yang berada pada kedua kran.
- check drat luar pada kran dan drat dalam sambungan kran, apakah mengalami kebocoran?
- check, apakah tabung air panas yang berada pada bagian tengah mengalami kebocoran?
- check selang untuk pengurasan air yang berada pada bagian bawah tabung air panas, apakah pecah atau mengalami kebocoran?  air yang keluar dari kran warna merah tidak panas sama sekali
- chek, apakah heater pemanas mengalami kerusakan, ukur dengan tester pada kedua kabel terminal pada posisi skala ohm.
- check, overload pada tabung air panas, apakah ada tahanan/ohm untuk mengalirkan arus listrik.
- check juga kabel-kabel yang menuju ke heater pemanas apakah terputus atau terbakar?
- check switch on-off heater pada bagian belakang dispenser, apakah pada posisi on?
·         Cara membuka kap depan dispenser sbb :
- angkat terlebih dahulu galon yang berisi air, dan keringkan air yang berada pada tabung stenless dan tabung air panas dengan cara membuka tutup pipa selang pengurasan yang terdapat pada bagian bawah konderser. atau bisa juga dengan menekan kedua kran dispenser.
- buka baut pada bagian belakang atas, agar kap bagian tabung atas terlepas.
- gunakan obeng kembang yang panjang untuk membuka baut kap depan dispenser, masukan obeng kembang panjang melalui sela-sela kondenser pada bagian belakang dispenser.
- setelah baut terlepas, lepaskan kedua kran dispenser dengan cara memutar kekiri.
- setelah kran terlepas buka bagian kap bagian kran dengan cara menariknya ke belakang.
kap dispenser ada 3 buah, satu terdapat pada bagian atas tabung stenless yang berfungsi untuk menahan beban galon air. kap yang kedua dibagian kran dispenser, dan kap yang ketiga dibagian bawah kran dispenser. sebelum melepas kap bagian bawah kran, perhatikan bagian bawah kap apakah terdapat baut? jika tidak ada baut, anda bisa melepaskannya dengan cara menarik kebelakang.

Integrasi Diferensial

Integrasi diferensial dapat digambarkan seperti bagan 1.2 berikut.



Integrasi Diferensial Eksak Tertentu Jika z = z (x, y) merupakan fungsi yang benar-benar ada, maka dz merupakan diferensial eksak. Harga dari dz = (∂z / ∂x) y dx + (∂z / ∂y) x dy. Hasil integrasi diferensial eksak tertentu dz ditunjukkan oleh persamaan 1.10 berikut.
∫ dz = ∫ dz (x, y) = z (xf, yf) – z (xi, yi) = zf – zi = ∆ zif . … (1.10) Indeks i berarti initial (awal) dan indeks f berarti final (akhir). Jadi, hasil akhir dari integrasi diferensial eksak tertentu berwujud bilangan atau nilai tertentu (∆ zif). Dapat dibuktikan, bahwa integrasi diferensial eksak tertentu tidak bergantung pada jalan integrasi dan hanya bergantung pada kondisi awal (i) dan kondisi akhir (f).


 Integrasi Diferensial Eksak Tak Tentu Jika z = z (x, y) merupakan fungsi yang benar-benar ada, maka dz merupakan diferensial eksak. Harga dari dz = (∂z / ∂x) y dx + (∂z / ∂y) x dy. Hasil integrasi diferensial eksak tak tentu dz ditunjukkan oleh persamaan 1.11 berikut. ∫ dz = ∫ dz (x, y) = z (x, y) + C. ……….. (1.11) Hasil integrasi diferensial eksak tak tentu adalah fungsi aslinya ditambah dengan tetapan integrasi C

 Integrasi Diferensial Tak Eksak Tertentu Jika A = A (x, y) merupakan fungsi yang benar-benar tidak ada, maka dA merupakan diferensial tak eksak. Harga dari dA = (∂A / ∂x)y dx + (∂A / ∂y) x dy. Hasil integrasi diferensial tak eksak tertentu dz ditunjukkan oleh persamaan I.12 berikut.
∫ dA = ∫ dA (x, y) = A (xf, yf) – A (xi, yi) = Af – Ai = ∆ Aif . … (1.12) 

Indeks i berarti initial (awal) dan indeks f berarti final (akhir). Jadi, hasil akhir dari integrasi diferensial tak eksak tertentu berwujud bilangan atau nilai tertentu (∆ Aif). Dapat dibuktikan, bahwa integrasi diferensial tak eksak tertentu bergantung pada “jalan” integrasinya.

 Integrasi Diferensial Tak Eksak Tak Tentu Jika A = A (x, y) merupakan fungsi yang benar-benar tidak ada, maka dA merupakan diferensial tak eksak. Harga dari dA = (∂A / ∂x)y dx + (∂A / ∂y) x dy. Hasil integrasi diferensial tak eksak tak tentu dz ditunjukkan oleh persamaan 1.13 berikut.
∫ dA = ∫ dA (x, y) = A (x, y) + C. ……….. (1.13) Hasil integrasi diferensial tak eksak tak tentu adalah fungsi aslinya ditambah dengan tetapan integrasi C. Namun, karena fungsi asli A = A (x, y) benar-benar tidak ada, maka hasil
integrasi ini tidak mungkin.

Sistem Hidrostatis

Sistem hidrostatis merupakan zat kimia yang tidak diperhatikan sifat kelistrikannya, kemagnetannya, elastisitasnya, dan sifat tegangan permukaannnya. Sistem hidrostatis ada dua, yaitu: zat murni dan zat tak murni. 

Contoh sistem hidrostatis adalah: gas, cairan, atau padatan. Sistem hidrostatis disebut zat murni apabila terdiri atas satu senyawa kimia saja dan berada dalam keadaan setimbang termodinamis. Misalnya: Es (H2O), Air (H2O), Uap Air (H2O), Karbondioksida (CO 2), Hidrogen (H2), Nitrogen (N2), atau Oksigen (O 2). 

Karbondioksida, hidrogen, nitrogen, dan oksigen dapat berada dalam wujud padatan, gas, maupun cairan. Sistem hidrostatis disebut zat tak murni apabila terdiri atas campuran zat murni yang berada dalam keadaan setimbang termodinamis. 

Misalnya: udara yang terdiri dari campuran oksigen, nitrogen, uap air, dan karbondioksida. Dalam udara masih ada beberapa jenis gas lagi, namun jumlahnya sedikit sekali, misalnya gas argon, helium, neon, dan gas kripton. Persamaan keadaan sistem hidrostatis dinyatakan dalam fungsi 

f (p, V, T) = 0 . . . . . (3.6)
Sebagai teladan. 

a. Gas Ideal, dengan persamaan keadaan:
 p V = n R T . . . . . (3.7.a) 

b. Gas Clausius, dengan persamaan kedaan:
  p (v – b) = R T . . . . (3.7.b) 



A, B, C, dan seterusnya disebut sebagai koefisien virial yang merupakan fungsi temperatur. Karena persamaan 3.8.b sama dengan persamaan 3.9, maka diperoleh:
A = R T, B = R T b, C = R T b2,